The status of infraspecific taxa and new subspecies in Ptilotus stirlingii (Amaranthaceae)

Robert W. Davis and Ryonen Butcher
Western Australian Herbarium, Department of Environment and Conscrvation, Locked Bag 104, Bentley Delivery Centre, Western Australia, 6983

Abstract

Davis, R.W. \& Butcher, R. The status of infraspecific taxa and new subspecies in Ptilotus stirlingii (Amaranthaceae). Nuytsia 20: 261-270 (2010). This paper evaluated current infraspecific taxa within Ptilotus stirlingii (Lind1.) F.Muell. using morphometric analysis. We conclude that var. pumilus Benl should no longer be recognised as a distinct variety from var. stirlingii and that var. laxus (Benth.) Benl and var. minutus Benl should be merged into a single taxon. The new name P. stirlingii subsp. australis R.W.Davis \& R.Butcher is erected for this taxon and var. stirlingii is elevated in rank. With these changes, P. stirlingii now comprises two subspecies rather than four varieties. Revised descriptions and a key are presented for the new subspecies.

Introduction

This paper is one of a continuing series dealing with appropriate ranks for Western Australian infraspecific taxa within Ptilotus R.Br., in preparation for the Flora of Australia treatment of Amaranthaceae. It discusses the differences between the existing varieties of P. stirlingii (Lindl.) F.Muell., and establishes a new name, P. stirlingii subsp. australis R.W.Davis \& R.Butcher, subsp. nov.

Benl $(1959,1967)$ recognised four varieties in Ptilotus̈stirlingii: var. stirlingii (Lindl.) F.Muell., var. pumilus Benl, var. laxus (Benth.) Benl and var. minutus Benl. The varieties are distributed in two pairs within the South-west Botanical Province: var. stirlingii and var. pumilus occur in the north of this region in the area between Perth, Shark Bay and Manmanning, which is in the Avon Wheatbelt IBRA region (Interim Biogeographic Regionalisation for Australia; Department of Environment, Heritage, Water and the Arts 2008); var. laxus and var. minutus are distributed in the south, from the southeastern edge of the Stirling Range eastward across the Esperance Plains IBRA region. Ptilotus stirlingii var. pumilus is currently listed as a Priority One taxon under the Western Australian Department of Environment and Conservation's (DEC) Conservation Codes for Western Australian Flora (Smith 2010). One of its two disjunct populations occurs within the distribution range of var. stirlingii. Across their distributions, the few populations of var. laxus and var. minutus are closely allopatric, with var. laxus occurring closer to the coast than var. minutus (Western Australian Herbarium 1998-).

The key morphological character used by Benl (1967) for separating the northern pair of varieties from the southern pair was stem and leaf indumentum. The northern pair (vars stirlingii and pumilus) are recorded as cobwebby-pubescent or woolly-tomentose, while the southern pair (vars laxus and minutus) are recorded as glabrous or glabrescent.

Benl (1967) cited two differences between var. stirlingii and var. pumilus, with the latter (described from only the holotype) having a woolly indumentum on stems and leaves and tepals $8-9 \mathrm{~mm}$ long and the former having a sparser indumentum and tepals to $10-12 \mathrm{~mm}$ long. As additional specimens have been lodged at the Western Australian Herbarium (PERTH) it has become clear that these differences are not consistent. Indumentum grades subtly from sparsely hairy to woolly among all northern specimens and tepal length has now been found to vary continuously from ($7.2-$) $8-14 \mathrm{~mm}$. These differences appear to be influenced by environmental factors, with plants in drier habitats tending to have smaller tepals and woollier indumentum.

Benl (1967) regarded var. minutus and var. laxus as differing from each other in leaf shape and flower number, with var. minutus having narrowly elliptic leaves and 8-12 flowers per spike and var. laxus having broadly cuneate to obovate leaves and 15-20 flowers per spike. Again, these characters have now been found to vary continuously among southern specimens of P. stirlingii, and gradation in leaf shape from elliptic to obovate is observable on some individual specimens (e.g. PERTH 07256361). Interestingly, the holotype of var. minutus (in early flower) clearly has more than 12 flowers per spike.

In summary, revisionary study of Ptilotus stirlingii has determined that the characters used to distinguish the pairs of varieties are continuous in nature. As such, recently collected specimens are difficult to place under the existing taxonomy. A morphometric analysis of P. stirlingii was therefore undertaken to test the robustness of Benl's taxonomy.

Methods

Ten characters (six continuous quantitative characters, two quantitative ratio characters and two qualitative binary/multistate characters; Table 1) were measured for 50 specimens of Ptilotus stirlingii held at PERTH. These comprised two specimens of var. laxus (of three held at PERTH), two specimens of var. pumilus (of two), four specimens of var. minutus (of four; one originally identified as P. aff. stirlingii) and 35 specimens of var. stirlingii (of 55; one originally identified as P. aff. stirlingii, six originally identified as var. indet.). Type material of var. minutus is held at PERTH but was not included in the analysis as the spikes are immature. All characters were measured from herbarium specimens. Voucher specimen details are presented in Table 2.

Five measurements were made per character with the mean used in morphometric analysis. Characters were selected to include those used by Benl to separate the varieties of P. stirlingil (i.e. tepal length, leaf shape and indumentum of stems and leaves) and to include others found by the first author to be generally reliable for discriminating taxa within the genus (i.e. style, bract and bracteole length). Number of flowers per inflorescence (used by Benl to separate var. laxus and var. minutus) was not used as it was difficult to count accurately and is highly variable on individual specimens due to the indeterminate growth of the spike axis (the majority of PERTH specimens lacked fully mature spikes). Ptilotus stirlingii differs in this regard from few-flowered species such as P. beardii Benl and P. rigidus Lally. Spike length (and therefore flower number) in P. stirlingii has also been observed to be affected by growing conditions. Indumentum was assessed using a dissecting microscope and subjectively coded to reflect the variation observed. Habit was coded from specimen label data and/ or by interpretation of the specimen itself.

Table 1. Characters used in the morphometric analysis of Ptilotus stirlingii and character codes used in the NMDS ordination.

Quantitative characters	Code
1. Bract length (mm):	BL
2. Bracteole length (mm):	BrL
3. Tepal length (mm):	TL
4. Style length (mm):	SL
5. Leaf length (mm):	LL
6. Leaf width (mm):	LW
7. Leaf length:width (ratio):	LL/LW
8. Widest point of the leaf relative to total length (ratio):	DW/LL
Qualitative characters	
1. Indumentum of stems and leaves: 0 - very sparse, 1 - sparse, 2 - moderate, 3-woolly, 4 - densely woolly	IND
2. Habit: 0 - prostrate, 1 - sprawling to decumbent	HAB

The resulting data matrix was analysed phenetically using the software package Primer 6(v.6.1.13) (Clarke \& Gorley 2006). The Gower metric (Gower 1971) was used to create a resemblance matrix, as it is suitable for use with datasets containing a mixture of qualitative and quantitative characters (Crisp \& Weston 1993; Flann et al. 2008). The unweighted pair-group method of arithmetic averages (UPGMA) was used to create a dendrogram of hierarchically clustered individuals from this association matrix. This matrix was also used to derive an ordination using non-metric multidimensional scaling (NMDS). The ordination was run 100 times using random starting configurations and the result having the lowest Kruskal stress value in two- and three-dimensional space retrieved. Spearman rank correlation coefficients were calculated to assess the relative contribution of each character to the ordination.

Results

Cluster analysis of the Ptilotus stirlingii dataset identified two main groups: the first consisted of the two samples of var. laxus and the four samples of var. minutus united at a similarity level of c. 81, while the second contained the two samples of var. pumilus and all the samples of var. stirlingii united at a similarity level of $c .67$. The two groups were united at a similarity level of c. 59 (Figure 1). The same associations between the varieties were recovered in the two- and three-dimensional NMDS ordinations (Figure 1; three-dimensional ordination not shown), where there is a clear separation between the samples of vars pumilus+stirlingii from vars laxus+minutus. Kruskal stress values for the ordinations were 0.17 for the two-dimensional space and 0.11 for the three-dimensional space, indicating that a reasonably high degree of distortion of the data was required for it to fit the low number of dimensions (Quinn \& Keough 2002). These stress values are still sufficiently low for the configurations between the samples to be considered a good representation of the similarity matrix (Quinn \& Keough 2002). Characters contributing most to the separation between vars laxus+minutus from vars pumilus + stirlingii (Figure 1; Table 3) are bracteole length (Spearman's $\mathrm{R}=-0.5856$), leaf shape, as represented by the position of the widest point relative to the length ($R=-0.5815$), habit ($R=0.5582$), bract length (-0.4596) and the leaf length:width ratio $(R=0.4296)$, while those contributing most to the spread of samples within each group are indumentum ($R=-0.8165$), leaf width $(R=-0.7569)$ and leaf length $(R=-0.5968)$.

Table 2. Voucher specimens used in the morphometric analysis of Ptilotus stirlingii sens. lat. indicating the variety each specimen was identified as at the time of analysis and the subspecies to which it is now assigned. PERTH sheet numbers were used to label the specimens in the analysis. Specimens marked with an asterisk (*) had been previously identified as P. aff. stirlingii; specimens marked with a caret (\wedge) had previously been identified as P. stirlingii var. indet.

Variety	Subspecies	Collector	Locality	Voucher
laxus	australis	J. Bowen 15	Coomalbidgup via Esperance, Lort River	PERTH 00842680
laxus	australis	K.R. Newbey 1608	Culham Inlet	PERTH 00226874
minutus*	australis	R. Davis 10956	6.3 km N along track from Melaleuca Rd, c. 43 km NNW at Munglinup	PERTH 07256361
minutus	australis	N.N. Donner 3052	Location 1110, c. 30 km NNE of Young River Crossing on Ravensthorpe-Esperance road	PERTH 00226386
minutus	australis	Hj. Eichler 20277	S portion of Location 1117, c. 45 km N of Stokes Inlet (Stokes Inlet is c. 75 km W of Esperance)	PERTH 00335665
minutus	australis	P.G. Wilson 8042	Block 1156, Oldfield location, 13 km W of Young River	PERTH 230502, CANB
pumilus	stirlingii	R.J. Cranficld 2557	36.89 km W from Denham turnoff, Tamala Station	PERTH 220248
pumilus	stirlingii	B.H. Smith 1026	Avon Loc. 18304, 2 miles SW of Manmanning	PERTH 02664208
stirlingii	stirlingii	C. Andrews 1: 715	Blackwall Reach	PERTH 00226815
stirlingii	stirlingii	D.R. Bellairs 1093	10 km E of Kalbarri	PERTH 00232033
stirlingii	stirlingii	G. Benl 71 \& K.F. Kenneally 7530	Yanchep National Park, behind the emu enclosure	PERTH 00225916
stirlingii	stirlingii	E.M. Bennett 182	Yanchep, 33 miles N of Perth	PERTH 00226300
stirlingii	stirlingii	A. Bowden 11	3 km S of Seabird	PERTH 04594819
stirlingii	stirlingii	N.T. Burbidge 8043	Moore River Road, N of Yanchep National Park	PERTH 00226394
stirlingii	stirlingii	A.C. Burns 111	East Yuna, NE of Geraldton	PERTH 00226351, MEL
stirlingii	stirlingii	A.C. Burns 139	Between Walkaway and Burma Rd, SE of Geraldton	PERTH 00222747, CANB
stirlingii	stirlingii	Y. Chadwick 1783	172.5 miles [276 km] from Mount Magnet, Geraldton road	PERTH 00231525
stirling $i i^{\wedge}$	stirlingii	R. Davis 417	10 km SW of Regans Ford	PERTH 04590856
stirlingii	stirlingii	Dr Diels \& Pritzel 567	Swan district	PERTH 00226785
stirlingii^	stirlingii	J. Docherty 101	Railway Track, 1.4 km E of Peter Rd	PERTH 06058825
stirlingii^	stirlingii	J. Docherty 198	Railway reserve 3.4 km E of Peter Rd on Mullewa/Geraldton Rd	PERTH 06877729
stirlingii	stirlingii	J. Firth 17	Waggrakine	PERTH 05396468
stirlingii	stirlingii	C.A. Gardner 662	Mogumber	PERTH 00231967
stirlingii	stirlingii	C.A. Gardner 1162	Mogumber	PERTH 00231975

6886 ZI90 HL\＆Gd
ZSL00t90 HLAGd
S00t8E90 HLdGd
L6て9ZZ HLdGd
£IL9かI80 HLオヨd
80tてEZ HLYヨd
6002\＆Z H．LXGコ
MSN＇OH＇DG
‘I YG ‘ロV ‘9Iゅてદえ HL\＆ヨd gNVO ‘£Z89てZ00 HLXGd z0ç0c00 HLXGコ S8S6£200 HL甘Gd LL9Ssts0 HL甘Gd ItSIEZ HLXGd $0 \bullet 6 I \varepsilon 200 \mathrm{HL}$（GJ 6§6て6TLO HLUヨd 8L\＆9zz00 HLXGd ع0sะz8 HLHヨd
 49208990 HL甘ヨ

I E892Z00 HLYヨd
ャてもてEて HLXヨd
L0892て00 H．Ldヨd
6929 Z200 HLYヨd
ZItS¢IE HILZヨd
て£6Iをて HLYヨ
6S6I£ HId

 реог еqu！

 12s！̣［1！

นOIPโ！

 0о．гч1＂M
e！pion M2N ‘‘popped uostod
1SəM عนебึu！speg
SI！H ursuo j jo N proi κ q

 Mขนวลิu！W

戸トய！

dәчэиед јо MN ＇ру uеqеге）

EI dO MD upupoon＇\square	$1184!1115$	v！！8u！ 1115
＇u＇s sllut x＇${ }^{\text {d }}$	！！8u！	
	！̣8u！-11 s	1！Su！ 1 ！ 1 S
$8 \pm 6 \pm$ Кวาq！	！！8u！ 1 ！ 1 s	！！o์u！ 1 ！ 1
V85＇G＇T 110015011 A	！184！ 1 M1／	1184！ 1.115
ICLIZ P！uS＇V	1184！ 111 S	118uthtıs
L89IZ Plul ${ }^{\text {＇V }}$	！18u！ 1 ！ 1 s	

${ }^{7}$

¢1¢ $\frac{11}{}$	！！8u！ 1 ！ 1 S	！！8u！1 1 ！${ }^{\text {a }}$
¢108 20．60\％＇GY	118u！－17s	
	！！8utu！${ }^{\text {a }}$	！18u！ 1 －！ 1 S
LヵE uosuasoy 11	118 $\frac{11}{}$	＊！ 1 Bul］－4！${ }^{\text {a }}$
$\varepsilon \chi$ ว8plıұว ${ }_{\text {d }} W$	118u！ 1 ！11s	v！！8u！！ 115
	！ 1 ¢ 4 ！ .171 S	！！8u！ 411 S
＇u＇s uostuow＇Y		$1184!1 / 115$
96L Kวગow＇${ }^{\text {Y }}$	118ulutls	！18utlut
2261 T 2ıfll 7	！！Su！$/$［！${ }^{\text {a }}$	！！ $14!1 \cdot!1 / 5$

	！18u！ 114 s	11．84！ 1 129
Iてセて¢！${ }^{\text {¢ }}$	！！8u！ 1 ！ 1 S	$1184!1415$

E9I saurf W^{\prime}	118u！ 1 ！ 4 S	1！Su！lu！${ }^{\text {a }}$
LLEI9L yn！upuH y	！18utl－ul	！18u！luls
us stuah＇	！！ 1 ¢！${ }^{\text {dill }}$	！！8u！ 1 ！ 1 S
LOZ land T	118ul］．！1s	1184！141s
IS99 uffux ${ }^{\text {Fra }}$	1184！ 1 －！ 1 S	
915 uyfin＊V］	！18u！］ups	！1Su！ 1 ！ 1 S
	！184！n！	！18u！ 1115

Similarity

Figure 1. UPGMA dendrogram and (inset) 2-dimensional NMDS ordination of the four varictics of Ptilotus stirlingii based on 50 specimens by 10 characters, using the Gower metric. The dircetion of contribution of each character to the ordination, calculated by the Spearman rank correlation coefficient, is illustrated in the circular inset. Samples labelled by their PERTH sheet numbers: Character codes as for Table 1.

Three specimens of var. stirlingii (PERTH 231959, PERTH 00239585, PERTH 05455677) are peripheral to the remaining samples in both the cluster analysis and NMDS (Figure 1). Of these, PERTH 00239585 had previously been identified as P. aff. stirlingii and is notable for having small leaves and flowers, while PERTH 05455677 had not been identified to variety originally and is notable for having small flowers. The third specimen, PERTH 231959, differs from the remaining var. stirlingii specimens in having longer and broader leaves.

Table 3. Spearman rank correlation coefficients between the characters used to create the NMDS ordination and the ordination axes. Character codes as for Table 1.

	BL	BrL	TL	SL	LL	LW	LL/LW	DW/LL	IND	HAB
MDS 1	-0.4596	-0.5856	-0.3078	0.1061	-0.4351	-0.7598	0.4296	-0.5815	0.3105	0.5582
MDS 2	-0.0617	0.0751	-0.1698	-0.4614	-0.5968	-0.5606	0.0682	-0.0761	-0.8165	-0.2315

Discussion

The morphometric analysis suggests that only two subspecific taxa should be recognised in Ptilotus stirlingii, rather than the four varieties recognised by Benl $(1959,1967)$. Of the characters used by Benl to differentiate between the pairs of varieties, tepal length (for vars pumilus cf. stirlingii) and leaf shape (for vars laxus cf. minutus) intergrade, have low Spearman Rank coefficients on MDS2 (Table 3) and do not clearly separate their respective taxa. Indumentum is more highly correlated with the ordination ($\mathrm{R}=-0.8165$ on MDS2); however, some specimens of var. stirlingii are as woolly as specimens of var. pumilus, and there is a complete intergrade of indumentum density from nearly glabrous to densely woolly among the northern specimens.

Accordingly, we recognise here two taxa, a northern taxon combining var. stirlingii and var. pumilus, and a southern taxon, combining var. minutus and var. laxus, based on the two clear groups recovered by the classification and ordination. These two taxa are best recognised as subspecies of a broadly circumscribed P. stirlingii. They are widely allopatric and differ most obviously in habit, with the southern plants being prostrate while the northern ones are arching to sprawling, and bract and bracteole length, with the northern taxon having bracts $1.8-4.5 \mathrm{~mm}$ long and bracteoles $3-5 \mathrm{~mm}$ long and the southern taxon having bracts $5.3-7.5 \mathrm{~mm}$ long and bracteoles $5.4-6.3 \mathrm{~mm}$ long. Leaf shape is a useful supplementary character, with the southern taxon having oblanceolate to obovate leaves, in addition to elliptical leaves, while the northern taxon has elliptical leaves. For clarity, the new name Ptilotus stirlingii subsp. australis R.W.Davis \& R.Butcher subsp. nov. is erected here for the southern taxon, in preference to retaining either of Benl's varietal names. The northern taxon retains the autonym at subspecific rank.

Taxonomy

Ptilotus stirlingii (Lindl.) F.Muell., Syst. Census Austral. Pl. 1:28 (1882). Trichinium stirlingii Lindl., Edwards's Bot. Reg. 25: 28 (1839). Type: Swan River Colony, [Western Australia], J. Stirling s.n. (holo: CGE n.v.).

Trichinium carneum Moq. in A.P. de Candolle, Prodr. 13(2): 291 (1849). Type: Lower Swan R., [Western Australia], C. Fraser 158 (holo: P? n.v.; iso: K image!).

Arching, decumbent, sprawling or prostrate perennial herb to 30 cm high. Stems terete, ribbed, sparsely hairy to woolly, sometimes glabrescent. Cauline leaves alternate, petiolate, narrowly elliptical or oblanceolate to obovate, $5-50 \mathrm{~mm}$ long, $1-8 \mathrm{~mm}$ wide, glabrous or sparsely hairy to woolly, margins undulate. Inflorescences solitary, terminal, pink to pale pink, spherical or ovoid to shortly cylindrical, $10-37 \mathrm{~mm}$ long, $15-28 \mathrm{~mm}$ wide; bracts translucent, tinged pink towards centre, narrowly ovate to ovate, $1.8-7.5 \mathrm{~mm}$ long, sparsely hairy with verticillate to nodose hairs, becoming glabrous towards the margins; bracteoles translucent, tinged pink along midrib, ovate to broadly ovate or obovate to broadly obovate, $3-6.3 \mathrm{~mm}$ long, glabrous or sometimes with sparse, verlicillate hairs along midrib. Flowers pedicellate; outer tepals pink to pale pink, tinged white, narrowly oblanceolate, concave, (7.2-)8-14 mm long, hairy except at apex, with verticillate hairs, apex rounded to truncate, sometimes retuse or apiculate, serrated; inner tepals ($6.8-$) $7.5-13.5 \mathrm{~mm}$ long, with a basal tuft of hairs on inner face; staminal cup 1.7-3 mm long, glabrous; stamens 2 ; staminodes 3 ; style slightly curved, subcentrally fixed to ovary, $2.9-5.1 \mathrm{~mm}$ long; ovary glabrous. Seed slightly glossy to glossy, brown, to 1.8 mm long.

Notes. Ptilotus stirlingii is often misidentified as P. sericostachyus and is relatively close morphologically. The following key can be used to separate P. sericostachyus and the infraspecific taxa of P. stirlingii.

Key to taxa

2. Plants arching or sprawling, bracts $1.8-4.5 \mathrm{~mm}$ long, bracteoles

3-5 mm long...P. stirlingii subsp. stirlingii
2. Plants prostrate, bracts $5.3-7.5 \mathrm{~mm}$ long, bracteoles $5.4-6.3 \mathrm{~mm}$ long.........P. stirlingii subsp. australis

Ptilotus stirlingii subsp. stirlingii

Ptilotus stirlingii (Lindl.) F.Muell. var. pumilus Benl, Muelleria 1: 108 (1959). Type: Shark Bay, Western Australia, October 1877, F. Mueller s.n. (holo: MEL!).

Arching, decumbent or sprawling perennial herb to 30 cm high. Stems terete, ribbed, sparsely hairy to woolly. Cauline leaves narrowly elliptical to oblanceolate, $5-50 \mathrm{~mm}$ long, $1-8 \mathrm{~mm}$ wide, sparsely hairy to woolly. Inflorescences spherical to ovoid, $10-35 \mathrm{~mm}$ long, $15-27 \mathrm{~mm}$ wide; bracts narrowly ovate to ovate, $1.8-4.5 \mathrm{~mm}$ long; bracteoles ovate to broadly obovate, $3-5 \mathrm{~mm}$ long. Outer tepals ($7.2-$) $8-12 \mathrm{~mm}$ long; inner tepals ($6.8-$) $7.5-11.5 \mathrm{~mm}$ long; staminal cup $1.7-2.5 \mathrm{~mm}$ long; style $2.9-5 \mathrm{~mm}$ long; ovary glabrous. Seed glossy, brown, to 1.7 mm long.

Distribution and habitat. Distributed from Shark Bay southward to Perth, in the Swan Coastal Plain and Geraldton Sandplains IBRA regions, and eastward into the west and north-western edges of the Avon Wheatbelt IBRA region. Found in a wide range of habitats. Common on sandy, coastal heaths through to kwongan sandplains and woodlands.

Phenology. Flowering from late October through to January.

Notes. The Priority One conservation listing for Ptilotus stirlingii var. pumilus (Smith 2010) is no longer necessary as this variety has been subsumed within subsp. stirlingii, which is not considered to be under threat.

Ptilotus stirlingii subsp. australis R.W.Davis \& R.Butcher, subsp. nov.

Typus: 6.3 km north along track from Melaleuca Road, c. 43 km north-north-west of Munglinup, Western Australia, $33^{\circ} 20^{\prime} 55.3^{\prime \prime} \mathrm{S}, 120^{\circ} 39^{\prime} 10.3^{\prime \prime} \mathrm{E}, 12$ December 2005, R. Davis 10956 (holo: PERTH 07256361; iso: CANB, K).

Ptilotus stirlingii (Lindl.) F.Muell. var. minutus Benl, Mitt. Bot. Staatssamml. München 6: 503 (1967). Type: Grass Patch, Western Australia, October 1931, W.E. Blackall 1028 (holo: PERTH!; iso: PERTH!).

Ptilotus stirlingii (Lindl.) F.Muell. var. laxus (Benth.) Benl, Mitt. Bot. Staatssamml. München 6: 500 (1967). Trichinium laxum Benth., Fl. Austral. 5: 232 (1870); Ptilotus laxus (Benth.) F.Muell., Syst. Census Austral. Pl. 1:28 (1882). Type: between Cape Le Grand and Cape Pasley, [Western Australia], G. Maxwell s.n. (holo: MEL n.v; iso: BM n.v, K (image!); MEL n.v.).

Prostrate perennial herb to 8 cm high. Stems terete, ribbed, sparsely hairy. Cauline leaves narrowly elliptical or oblanceolate to obovate, $5-30 \mathrm{~mm}$ long, 2-7 mm wide, glabrous to sparsely hairy. Inflorescences ovoid to shortly cylindrical, $20-37 \mathrm{~mm}$ long, $22-28 \mathrm{~mm}$ wide; bracts narrowly ovate, $5.3-7.5 \mathrm{~mm}$ long; bracteoles broadly ovate to obovate, $5.4-6.3 \mathrm{~mm}$ long. Outer tepals $10-14 \mathrm{~mm}$ long; inner tepals $10.5-13.5 \mathrm{~mm}$ long; staminal cup $2.5-3 \mathrm{~mm}$ long; style $3.5-5.1 \mathrm{~mm}$ long; ovary glabrous. Seed slightly glossy, brown, to 1.8 mm long.

Distribution and habitat. Distributed through a large part of the Esperance Plains IBRA region, where it is mostly found in coastal areas, although extends as far inland as the Stirling Range and Grasspatch. Occurs in heathlands and mallee woodlands on deep sands to gravelly loams.

Phenology. Flowering from late October though to January.
Notes. Ptilotus stirlingii subsp. australis is poorly collected but from the material available it appears to be reasonably consistent morphologically. Field observations suggest that it may only be abundant after fire, perhaps accounting for the relatively few collections.

Acknowledgements

Rob Davis would like to thank Terena Lally, Barbara Rye, Kevin Thiele and Juliet Wege for their much valued botanical and nomenclatural advice, and Pina Milne for checking type material at MEL. Special thanks to Andrew Brown for his generous assistance with field work. Ryonen Butcher would like to thank Neil Gibson, Matthew Williams and Kevin Thiele for their assistance with morphometric analysis. Ryonen Butcher's contribution to this study was funded by a specific nature conservation project grant (2009-2010) within the Nature Conservation Service (formerly labelled as BCI).

References

Benl, G. (1959). New specics and varictics of Ptilotus. Muelleria I: 102-108.
Benl, G. (1967). Beitrag zu ciner Revision der Gattung Ptilotus R.Br. (Amaranthaceac). Mitteilungen (aus) der Botanischen Staatssammlung München 6: 493-504.
Clarke, K.R. \& Gorlcy, R.N. (2006). Primer v6: user manual/tutorial (PRIMER-E: Plymouth.)
Crisp, M.D. \& Weston, P.H. (1993). Gcographic and ontogenctic variation in morphology of Australian waratahs (Telopea: Protcaccac). Systematic Biology 42; 49-76.
Department of Environment, Heritage, Water and the Arts (2008). Interim Biogeographic Regionalisationfor Australia (IBRA), Version 6.1. http://www.environment.gov.au/parks/nrs/science/bioregion-framework/ibra/index.html [accessed 18 June 2010]
Flann, C., Brictwieser, I., Ward, J.M., Walsh, N.G. \& Ladiges, P.Y. (2008). Morphometric study of Euchiton traversii complex (Gnaphalicac: Asteraccac). Australian Systematic Botany 21: 178-191.
Gower, J.C. (1971). A general coefficient of similarity and some of its propertics. Biometrics 27: 857-874.
Quinn, G.P. \& Kcough, M.J. (2002). Experimental design and data analysis for biologists. (Cambridge University Press: Cambridge.)
Smith, M.G. (2010). Declared Rareand Priority Flora list for Western Australia. (Department of Environment and Conservation: Kensington, WA.)
Western Australian Herbarium (1998-). FloraBase - The Western Australian flora. http://florabasc.dec.wa.gov.au/ [accessed 17 March 2010]

